

 Abstract

An important aspect of partial-order planning is the
resolution of threats between actions and causal links in a
plan. We present a technique for automatically deciding
which threats should be resolved during planning, and which
should be delayed until planning is otherwise complete. In
particular we show that many potential threats can be
provably delayed until the end; that is, if the planner can find
a plan for the goal while ignoring these threats, there is a
guarantee that the partial ordering in the resulting plan can
be extended to eliminate the threats.

Our technique involves: 1) construction of an

operator
graph

 that captures the interaction between operators
relevant to a given goal, 2) decomposition of this graph into
groups of related threats, and 3) postponement of threats
with certain properties.

1 Introduction

In (McAllester & Rosenblitt 1991), the authors present a
simple elegant algorithm for systematic partial-order
planning (SNLP). Much recent planning work (Barrett &
Weld 1993, Collins & Prior 1992, Kambhampati 1992,
Penberthy & Weld 1992, Peot & Smith 1992) has been
based upon this algorithm.

In the SNLP algorithm, when threats arise between steps
and causal links in a partial plan, those threats are resolved
before attempting to satisfy any remaining open conditions
in the partial plan. In (Peot & Smith 1993) we investigate
several other strategies for resolving threats. Although
some of these strategies work much better than the SNLP
strategy, they are all fixed, dumb strategies. In practice, we
know that some threats that occur during planning are easy
to resolve, while others are difficult to resolve. What we
would like is a smarter threat-selection strategy that can
recognize and delay resolution of the easy threats in order
to concentrate effort on the difficult ones.

In this paper, we present techniques for automatically
deciding whether threats should be resolved during partial-
order planning, or delayed until planning is otherwise
complete. In particular, we show that certain threats can be
provably delayed until the end; that is, if the planner can
find a plan for the goal while ignoring these threats, there is

Postponing Threats in Partial-Order Planning

a guarantee that the partial ordering in the resulting plan
can be extended to eliminate the threats.

In Section 2, we construct

operator graph

s that capture
the interaction between operators relevant to a goal and set
of initial conditions. In Section 3, we develop theorems and
decomposition rules that use the operator graph to decide
when threats can be postponed. In Section 4 we discuss our
experience with these techniques and related work.

For purposes of this paper, we adopt a simple STRIPS
model of action, and assume the SNLP model of planning.
Many of the results and ideas can be applied to other
causal-link planners such as (Kambhampati 1993, Tate
1977). Full proofs of the theorems appear in (Smith & Peot
1993).

2 Operator graphs

Following (McAllester & Rosenblitt 1991), we define
special

Start

 and

Finish

 operators for a problem:

Definition 1:

The

Start

 operator for a problem is defined
as the operator having no preconditions, and having all of
the initial conditions as effects. The

Finish

 operator for a
problem is defined as the operator having no effects, and
having all of the goal clauses as preconditions.

Given these operators we construct an operator graph
for a problem recursively, according to the following rules:

Definition 2:

An

operator graph

 for a problem is a directed
bipartite graph consisting of

precondition nodes

 and

opera-
tor nodes

 such that:

1. There is an operator node for the

Finish

 operator.

2. If an operator node is in the graph, there is a pre-
condition node in the graph for each precondition
of the operator and a directed edge from the pre-
condition node to the operator node.

3. If a precondition node is in the graph, there is an
operator node in the graph for every operator with
an effect that unifies with the precondition and
there is a directed edge from the operator node to
the precondition node.

Mark A. Peot

Department of Engineering Economic Systems
Stanford University

Stanford, California 94305
peot@rpal.rockwell.com

David E. Smith

Rockwell International
444 High St.

Palo Alto, California 94301
de2smith@rpal.rockwell.com

In

Proceedings of the Eleventh National Conference

on Artificial Intelligence

(AAAI-93), 1993

October 11, 1994 2

To illustrate, consider the simple set of operators below

(relations, operator names, and constants are capitalized,
variables are lower case):

Shape(x)
Prec’s: Object(x), ¬ Fastened(x, z)
Effects: Shaped(x), ¬ Drilled(x)

Dri l l (x)
Prec’s: Object(x), ¬ Fastened(x, z)
Effects: Drilled(x)

Bolt(x, y)
Prec’s: Dril led(x), Dril led(y)
Effects: Fastened(x, y)

Glue(x, y)
Prec’s: Object(x), ¬ Fastened(x, z),

Object(y), ¬ Fastened(y, z)
Effects: Fastened(x, y)

Suppose that the goal is

,

and the initial conditions are:

The operator graph for this problem is shown in Figure
1. Note that each operator appears at most once in the

graph; but a clause such as may appear more
than once, if it appears more than once as a precondition.
Note that the graph can also contain cycles. If the
operator had an effect there would be directed
edges from to both and ,
forming loops with the directed edges from

Drilled(x)

 and

Drilled(y)

 to

Bolt(x,y)

. In this paper we will only
consider acyclic operator graphs. The basic results and
techniques also apply to cyclic graphs, but the definitions

Figure 1:

Operator graph for simple machine shop problem.

Fastened

 and

Object

 have been abbreviated for clarity. Circled
arcs represent a bundle of arcs.

Shaped x() Shaped y() Fastened∧ x y,()∧

Object(A) Fastened¬ A z,()
Object(B) Fastened B z,()¬

… …

Finish

Obj x()

Obj x()

Fast x z,()¬
Start

Fast x z,()¬
Shaped x()

Fast x y,()

Drilled x()

Obj x()

Fast x z,()¬

Shaped y()

Drilled y()

Obj y()

Fast y z,()¬

Shape

BoltDrill

Glue

Object x()

Bolt
Drilled z()

Bolt x y,() Drilled x() Drilled y()

and theorems are more complicated. The full theory is
given in (Smith & Peot 1993).

The operator graph tells us what operators are relevant
to the goal, and also tells us something about the topology
of partial plans that will be generated for the problem. In
this example, it tells us that if the operation appears in
the plan, at least one operation will precede it in the
plan. The operator graph has an implicit

and/or

 structure to
it. Predecessors of an operator node are

ands

, since all
preconditions of the operator must be achieved.
Predecessors of a precondition node are

ors

, since they
correspond to different possible operators that could be
used to achieve the precondition.

2.1 Use Count

In the example above, the

Glue

 and

Bolt

 operators are used
for only one purpose, while the

Dri l l

 and

Shape

 operators
are used for more than one purpose. This information is
important for our analysis of operator threats. We therefore
introduce the following notion:

Definition 3:

The

use count

 of a node in the graph is
defined as the number of directed paths from the node to

Finish

.

The use count of an operator is an upper bound on the
number of times the operator could appear in a partial plan.
It can be infinite for graphs with cycles.

2.2 Threats

So far, operator graphs only tell us which subgoals and
operators may be useful for a problem.

Definition 4:

Let

O

 be an operator node, and

P

 be a precon-
dition node in an operator graph. If some effect of

O

 unifies
with the negation of

P

 we say that

O

 threatens

P

 and denote
this by .

The threats for our example are shown in Figure 2.

Figure 2:

Operator graph with threats (heavy lines).

Bolt
Dri l l

O P⊗

Finish

Obj x()

Obj x()

Fast x z,()¬
Start

Fast x z,()¬
Shaped x()

Fast x y,()

Drilled x()

Obj x()

Fast x z,()¬

Shaped y()

Drilled y()

Obj y()

Fast y z,()¬

Shape

BoltDrill

Glue

October 11, 1994 3

2.3 Eliminating Threats

Not all threats in the operator graph are important. Some of
them will never actually occur during planning. In
particular, consider the threat from

Start

 to
. The initial conditions operator always

precedes all other operators in a plan. As a result, there is
no possibility that

Start

 can ever clobber an effect
produced by another operator. Therefore we can eliminate
these threats from the graph.

Theorem 1:

Threats emanating from

Start

 can be elimi-
nated.

A related class of threats are those between operators
and preconditions that are successors of each other.
Consider the threat from to its precondition

. This says that gluing clobbers its
precondition. This is not a problem since the clobbering
follows the consumption of the precondition. As a result,
this threat can be eliminated. Similar arguments can be
made for the threat from to the

 precondition of .
Note that our arguments rely on the fact that and

 will only appear once in the final plan. If
appeared more than once, there is a distinct possibility that
one gluing operation might clobber the precondition of
another gluing operation. As a result, we can only eliminate
such threats when the use count of the operator is 1.

Theorem 2:

Threats from an operator to any predecessor or
successor in the graph can be eliminated if the threatening
operator has use count 1.

A third source of superfluous threats are

disjunctive

branches in the operator graph. In our example, there are
two different ways of achieving the subgoal

: bolting and gluing. Only one of these two
alternatives will appear in any given plan. As a result, we
can ignore threats that go from one branch to the other. This
means that the edges from to the
preconditions of , and from to the

 precondition of can be
eliminated.

As with Theorem 2, we need to consider use count.
Suppose that there was a second subgoal of the form

. The planner might choose for
one of these subgoals, and for the other. In this
case, a threat between and the
precondition of could occur.

Theorem 3:

If a threat is between two disjunctive branches
in the operator graph, and the threatening operator has use
count 1, the threat can be eliminated.

To decide if a threat is between two disjunctive branches
we need to look at the nearest common ancestor of the
threatening operator and precondition. For the threat

Fastened x y,()

Glue x y,()
Fastened x z,()¬

Bolt x y,()
Fastened x z,()¬ Dril l x()

Glue
Bolt Glue x y,()

Fastened x y,()

Bolt x y,() Fastened¬
Glue x y,() Glue x y,()

Fastened x z,()¬ Dril l x()

Fastened x y,() Bolt x y,()
Glue x y,()

Bolt x y,() Fastened x y,()¬
Glue x y,()

between and the precondition
of , the nearest common ancestor is

. Since this is a precondition node, the
threat is between disjunctive branches.

After applying Theorems 1, 2, and 3, there are only four
remaining threats, as shown in Figure 3. These are the only
possible threats that can actually arise during planning.

3 Postponing Threats

In Figure 3, consider the threats
and . These threats tell us that
allowing Shape operations to occur between Drill and Bolt
operations may cause problems. However, in considering
the graph, we can see that there is an easy solution. If we
add the ordering constraint that

Shape

 operations must
occur before

Dri l l

 operations, both threats are eliminated.
We could have the planner automatically add these

constraints every time or operations were
added to a partial plan. Although this strategy would work,
it is more restrictive than necessary. In our example, if two
different objects,

A

 and

B

 are used for

x

 and

y

, there would
be two different operations, and two different
operations in the final plan. To get rid of the threats it would
only be necessary that precede and

 precede . The other potential threats go
away by virtue of the different variable bindings for

x

 and

y

.
To avoid this over-commitment, it is better to

postpone

the threats between and . No matter
what plan is generated, we can always eliminate this threat

later

 by imposing the necessary ordering constraints
between and operations.

The argument made above relies on two things:

1. There are ordering constraints that will resolve the
threats,

2. The other potential threats do not interfere with
these ordering constraints.

Figure 3:

Threats remaining after the elimination theorems have
been applied.

Bolt x y,() Fastened x y,()¬
Glue x y,()

Fastened x y,()

Finish

Obj x()

Obj x()

Fast x z,()¬
Start

Fast x z,()¬
Shaped x()

Fast x y,()

Drilled x()

Obj x()

Fast x z,()¬

Shaped y()

Drilled y()

Obj y()

Fast y z,()¬

Shape

BoltDrill

Glue

Shape x() Drilled x()⊗
Shape x() Drilled y()⊗

Shape Dril l

Shape Dril l

Shape A() Dril l A()
Shape B() Dril l B()

Shape x() Drilled x()

Shape Dril l

October 11, 1994 4

The first part of this argument is straightforward; in our
case, demoting before did the trick, since it
prevents from occurring between and .
The second part of the argument is tougher. It requires
showing that none of the possible resolutions of the
remaining threats will prevent the ordering of Shape
operations before Drill operations. To show this, we need to
consider all possible ways that the planner might choose to
resolve the remaining set of threats.

First consider the threat .
Since Bolt cannot come before Start, demotion is not
possible for this threat. However, promotion is possible,
since is consistent with the operator graph.
We therefore need to consider the possibility that this
constraint might be added to the operator graph.
(Separation is not possible in this case. Even if it were,
separation adds no ordering constraints to the graph, and
therefore does not concern us.)

Next consider the threat .
As before, demotion is not possible since cannot
come before

Start.

 However, promotion is possible, since
 is consistent with both the operator graph,

and with the constraint .
Since the addition of and

do not interfere with , condition (2) is also
satisfied.

The general form of this argument is summarized in the
following theorem:

Theorem 4:

Let

T

 be the set of threats in an operator graph,
and let

P

 be a subset of those threats. The threats in

P

 can
be postponed if there is a set of ordering constraints that
resolves the threats in

P

 for every possible resolution of the
remaining threats in .

Proof Sketch:

Suppose that SNLP ignores all threats corre-
sponding to the threats

P

 in the operator graph. Consider a
final plan

F

 produced by SNLP. Let

R

 be the set of threats
that were resolved in the construction of

F

. The threats in

R

are instances of the threats

T-P

 in the operator graph. Thus
there is some resolution of threats in

T-P

 that corresponds
to the resolution of

R

 in the plan. By our hypothesis, there
is some set of ordering constraints in the operator graph
that resolves the threats in

P

, for each possible resolution of

T-P

. These ordering constraints will therefore resolve any
instances of

P

 ignored during the construction of

F

. As a
result, there is an extension of the partial ordering of

F

 that
will resolve all of the postponed threats. Since

F

 was an
arbitrary plan, the theorem follows.

Corollary 5:

Let

T

 be the set of threats in an operator
graph. The (entire) set of threats

T

 can be postponed if there
is a set of ordering constraints that resolves the threats in

T

.

Shape Dril l
Shape Dril l Bolt

Bolt x y,() Fastened x y,()¬⊗

Shape Bolt<

Glue x y,() Fastened x y,()¬⊗
Glue

Shape Glue<
Shape Bolt<

Shape Glue< Shape Bolt<
Shape Dril l<

T P−

In the machine shop example, we could use Corollary 5
to postpone the entire set of threats at once, since the three
ordering constraints , , and

 resolve all four of the threats. In general,
however, this corollary cannot be applied as frequently as
Theorem 4. The reason is that this corollary requires the
resolution of all threats by ordering constraints. There may
be some threats that can only be resolved by separation
during planning or that cannot be resolved. In these cases
Corollary 5 cannot be applied, but Theorem 4 may still
allow us to postpone some subset of the threats. As an
example, consider the operator graph shown in Figure 4.

In this example, the two threats and can
only be resolved by separation. However, the threat
can always be resolved by imposing the ordering constraint

 (demotion). Since demotion is consistent with the
only possible resolution of the remaining threats, the threat

 can be postponed according to Theorem 4.

3.1 Over-constraining

The primary difficulty with applying Theorem 4 and
Corollary 5 is that they both take time that is exponential in
the number of threats being considered. In fact it can be
shown that:

Theorem 6:

Given a partial ordering and a set of threats, it
is NP-complete to determine whether there exists an exten-
sion to the partial ordering that will resolve the threats.

The proof of this theorem (Kautz 1992) involves a
reduction of 3-SAT clauses to a partial ordering and set of
threats. The complete proof can be found in (Smith & Peot
1993).

Although the general problem of postponing threats is
computationally hard, there are some special cases that are
more tractable. The first technique that we consider
involves over-constraining the operator graph. In particular,
we simultaneously impose both promotion and demotion
ordering constraints on the operator graph for all threats in
the graph but one. We then check to see if there is an
ordering constraint on the remaining threat (demotion or
promotion) that is still possible in the over-constrained
graph. If so, we know that the ordering constraint will work

Figure 4:

Operator graph where only two of the three threats can
be postponed.

Shape Dril l< Shape Glue<
Shape Bolt<

Start Finish

A 1 B

C 2 D

E 3 F

2 E⊗ 3 C⊗
2 B⊗

2 1<

2 B⊗

October 11, 1994 5

for all possible resolutions of the remaining threats, and we
can therefore postpone the threat. More precisely:

Theorem 7:

Let t be the threat . For each
remaining threat in the operator graph
augment the operator graph with the edges and

. The threat t can be postponed if either:

1. is consistent with the operator graph, and
 in the augmented opera-

tor graph.

2. is consistent with the operator graph, and
 in the augmented operator

graph.

Proof Sketch:

Let

A

 be the set of augmentation edges
added to the graph. Every consistent way of resolving the
set of remaining threats corresponds to some subset of
these constraints. Suppose that case 1 holds for the above
theorem. Since in the augmented
graph, we know that it will also hold for every subset of the
augmentation edges. As a result, we know that this condi-
tion holds for every possible way of resolving the remain-
ing threats in the graph. Furthermore, in a consistent graph,

 implies that t can be resolved by
demotion. As a result, Theorem 4 says that t can be post-
poned. The argument for case 2 is analogous.

To see how this theorem applies, consider the threat
 in Figure 3. To see if this

threat can be postponed, we need to augment the operator
graph with all ordering constraints that resolve the
remaining three threats. For the threat

 we need to add the edge
 to the graph, since it is the only

way of resolving the threat. For the other two threats,
 and , we

need to add the two edges and
. The resulting graph is shown in

Figure 5.

Figure 5:

Machine shop example with over-constrained threats.
Partial-ordering constraints are shown as grey arrows.

Ot
gOp Oc→

 ⊗
r t

gr p r c→
 ⊗

r t r p→
r c r t→

Ot Op<
Op Predecessors Ot()∉

Oc Ot<
Oc Successors Ot()∉

Op Predecessors Ot()∉

Op Predecessors Ot()∉

Glue x y,() Fastened x z,()¬⊗

Bolt x y,() Fastened x z,()¬⊗
Shape x() Bolt x y,()→

Shape x() Drilled x()⊗ Shape x() Drilled y()⊗
Shape x() Dril l x()→

Bolt x y,() Shape x()→

Finish

Obj x()

Obj x()

Fast x z,()¬
Start

Fast x z,()¬
Shaped x()

Fast x y,()

Drilled x()

Obj x()

Fast x z,()¬

Shaped y()

Drilled y()

Obj y()

Fast y z,()¬

Shape

BoltDrill

Glue

Now consider the two possibilities for resolving
.

Glue

 cannot be ordered
before

Start

 in the operator graph, so case 1 is out.

Glue

can be ordered after

Shape

, however, so we need to
consider case 2. In the augmented graph, the only successor
of

Glue

 is

Finish

. Since

Shape

 is not in this set, the second
condition is satisfied. Therefore we can postpone the threat

.
Theorem 7 can also be used to show that each of the

remaining threats in the machine shop problem can be
postponed. More generally, Theorem 7 can be applied in a
serial fashion: after one threat is postponed, it does not
need to be considered in the analysis of subsequent threats.

3.2 Threat Blocks

Although Theorem 7 is considerably weaker than Theorem
4, it can be applied in time that is linear in the size of the
operator graph. As a result, it can often be used to quickly
eliminate many of the easiest threats from consideration.
Unfortunately, there are some sets of threats where the full
power of Theorem 4 is still needed. Consider the graph
shown in Figure 6. The four threats shown in the top half of

the graph can be resolved and postponed using Theorem 4
but not Theorem 7. The set of threats in the bottom half of
the graph cannot be resolved using only ordering
constraints, and therefore cannot be postponed. In a case
like this, the top and bottom halves of the graph are
independent, and we should be able to examine the threats
in the two halves separately.

To do this we first need some definitions. We define a
block as a subset of an operator graph having a common
beginning and ending. More precisely:

Definition 5:

Let

Begin

 and

End

 be two operators such that

Begin

 is a predecessor of

End

 in the operator graph. A

 block

is a subset of the operator graph (ignoring threats), such
that, for each node

N

 in the block:

1.

Begin

 occurs on all paths from

Start

 to

N

.

2.

End

 occurs on all paths from

N

 to

Finish

.

3. Every node and edge on a path from

Begin

 to

N

 is
in the block.

4. Every node and edge on a path from

N

 to

End

 is in
the block.

Figure 6:

Threat graph with difficult threats.

Glue x y,() Fastened x z,()¬⊗

Glue x y,() Fastened x z,()¬⊗

October 11, 1994 6

In the graph above, each of the four branches constitutes
a block. Any two or three of these branches also constitute
a block.

Definition 6:

A

 threat block

 is a block where all threats that
touch any node in the block are contained completely
within the block. A threat block is

minimal

 if no subset of
the block is a threat block.

According to this definition, there are two minimal
threat blocks in the above graph, one containing the top two
and one containing the bottom two branches.

Theorems 4 and 7 can now be extended to threat blocks.
We restate Theorem 4 for threat blocks.

Theorem 8:

Let

T

 be the set of threats in a minimal threat
block and let

P

 be a subset of those threats. The threats in

P

can be postponed if there is a set of ordering constraints
that resolves the threats in

P

 for every possible resolution
of the remaining threats in .

Proof Sketch:

Consider the set of threats not in the threat
block. If we consider every possible way of resolving these
outside threats it is easy to see that the resulting ordering
constraints can have no impact on any ordering decisions
within the block. Thus, if the conditions of Theorem 8 hold,
we can expand the set

T

 to include the threats outside the
block and Theorem 4 will apply.

Using this theorem, we could examine and postpone the
threats in the top half of the graph of Figure 6.

It is relatively easy to find minimal threat blocks. We
start with one threat, and find the common descendents and
ancestors of both ends of the threat. If other threats are
encountered in the process, we include the endpoints of
these new threats in our search for a common ancestor and
descendent. With pre-numbering of the graph, this process
can be done in time linear in the size of the graph.

4 Discussion

4.1 Implementation

In our current implementation, we first attempt to eliminate
as many individual threats as possible using Theorem 7.
After this, we construct minimal threat blocks for the
remaining threats. We then use Corollary 5 on each
individual threat block. We have not yet implemented the
more powerful Theorems 4 or 8, but expect to apply them
only after other more tractable alternatives have failed.

Our preliminary testing indicates several things:

1. The number of threats that can be postponed var-
ies widely across problems and domains. As we
would expect, many more threats can be post-

T P−

poned in domains with loosely-coupled operators.
The techniques do little to help highly recursive
sets of operators.

2. The time taken to build an operator graph and ana-
lyze threats is computationally insignificant in
comparison to the time required to do planning.
For non-trivial planning problems, this time is less
than 10% of planning time, and is often much
smaller than that.

Our experience suggests that the speed of these
procedures is not a concern and that even the use of
Theorem 8 on threat blocks will probably not cause serious
computational problems. We speculate that if the threats in
a block are so numerous and tangled that the speed of these
techniques is a problem, the planner is in deep trouble
anyway.

4.2 Related Work

Both (Etzioni 1993) and (Knoblock 1990, 1991) have
proposed goal ordering mechanisms to reduce the number
of threats that arise during planning. In particular, Etzioni
and Knoblock construct and analyze graphs similar to the
operator graphs developed here. Etzioni derives goal-
ordering rules from this graph, while Knoblock constructs
predicate hierarchies to guide a hierarchical planner.
Unfortunately, both of these systems were developed for a
total-order planner. In a total-order planner the order in
which goals are processed affects the ordering of actions in
the plan. This, in turn, determines the presence or absence
of threats in the plan.

In contrast, for partial-order planning, the order in which
goals are processed does not determine the ordering of
actions within the plan. As a consequence, goal ordering
does not affect the presence or absence of threats in the
plan, and cannot be used to help reduce threats. Although
goal ordering can be used to reduce search in partial-order
planning (Smith 1988, Smith & Peot 1992), it cannot be
used to reduce the number of threats. A more detailed
critique of Knoblock’s technique can be found in (Smith &
Peot 1992).

4.3 Extensions

Originally, we thought it was possible to use local analysis
techniques to postpone many threats. However, all of our
conjectures in this area have proven false. The one area that
we think still holds promise is division into threat blocks.
We think that there may be criteria that will allow threats to
be broken up into smaller blocks.

Another approach that we think holds promise is
variable analysis in the operator graph (Etzioni 1993). By a
careful analysis of variable bindings in the operator graph,
it is often possible to eliminate many phantom threats from

October 11, 1994 7

the graph. This, in turn, makes it more likely that other
threats can be postponed.

There are other possibilities for analysis of the operator
graph, including analysis of potential loops. Here, the
recognition and elimination of unnecessary loops among
the operators can allow the postponement of additional
threats. Some of these possibilities are discussed in (Smith
& Peot 1993).

4.4 Final Remarks

The techniques developed in this paper have a direct impact
on the efficiency of the planning process. Whenever
possible, they separate the tasks of selecting actions from
the task of ordering or scheduling those actions. This is a
natural extension of the least-commitment strategy inherent
to partial-order planning.

But perhaps as important as threat postponement is the
ability to recognize threats that are difficult to resolve. If a
block of threats cannot be postponed, the planner should
pay attention to those threats early. This information could
be used to help the planner avoid partial plans with difficult
threat blocks. It could also be used to help determine the
order in which to work on open conditions. In particular, if
the planner is faced with a difficult threat block it should
probably generate and resolve that portion of the plan early.
In our experience, both the choice of partial plan and the
choice of open condition can dramatically influence the
performance of a planner. For this reason, information
about difficult threat blocks could make a significant
difference.

 Acknowledgments

The idea of analyzing threats in the operator graph was
motivated by the work of Craig Knoblock (Knoblock 1990,
1991). Thanks to Mark Drummond, Steve Minton, Craig
Knoblock, and Oren Etzioni for comments and discussion.
Thanks to Henry Kautz and David McAllester for help with
the NP-completeness result. This work is supported by
DARPA contract F30602-91-C-0031.

 References

Barrett, A. and Weld, D. 1993. Partial-Order Planning:
Evaluating Possible Efficiency Gains, Technical Report 92-
05-01, Dept. of Computer Science, University of Washing-
ton.

Collins, G., and Pryor, L. 1992. Representation and Perfor-
mance in a Partial Order Planner, Technical Report 35, The
Institute for the Learning Sciences, Northwestern Univer-
sity.

Etzioni, O. 1993. Acquiring Search-Control Knowledge via
Static Analysis,

Artificial Intelligence

, to appear.

Harvey, W. 1993. Deferring Threat Resolution Retains Sys-
tematicity, Technical Note, Department of Computer Sci-
ence, Stanford University.

Kambhampati, S. 1992. Characterizing Multi-Contributor
Causal Structures for Planning,

 In Proceedings of the First
International Conference on AI Planning Systems

, College
Park, Maryland, 116-125.

Kambhampati, S. 1993. On the Utility of Systematicity:
Understanding Tradeoffs between Redundancy and Com-
mitment in Partial-Ordering Planning,

In Proceedings of
the Thirteenth International Conference on AI

, Chambéry,
France.

Kautz, H. 1992, personal communication.

Knoblock, C. 1990, Learning abstraction hierarchies for
problem solving.

In Proceedings of the Eight National
Conference on AI

, Boston, MA, 923–928.

Knoblock, C. 1991. Automatically Generating Abstractions
for Problem Solving, Technical Report CMU-CS-91-120,
Dept. of Computer Science, Carnegie Mellon University.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning,

In Proceedings of the Ninth National Con-
ference on AI

, Anaheim, CA, 634–639.

Penberthy, J. S., and Weld, D. 1992. UCPOP: A Sound,
Complete, Partial Order Planner for ADL,

In Proceedings
of the Third International Conference on Knowledge Rep-
resentation and Reasoning

, Cambridge, MA.

Peot, M., and Smith, D. 1992. Conditional Nonlinear Plan-
ning,

In Proceedings of the First International Conference
on AI Planning Systems

, College Park, MD, 189-197.

Peot, M., and Smith, D. 1993. Threat-removal Strategies
for Partial-Order Planning,

In Proceedings of the Eleventh
National Conference on AI

, Washington, D.C.

Smith, D. 1988. A Decision Theoretic Approach to the
Control of Planning Search., Technical Report 87-11, Stan-
ford Logic Group, Department of Computer Science, Stan-
ford University.

Smith, D., and Peot, M. 1992. A Critical Look at Knob-
lock’s Hierarchy Mechanism,

In Proceedings of the First
International Conference on AI Planning Systems

, College
Park, Maryland, 307-308.

Smith, D., and Peot, M. 1993. Threat Analysis in Partial-
Order Planning. Forthcoming.

Tate, A. 1977. Generating Project Networks,

 In Proceed-
ings of the Fifth International Joint Conference on AI

, Bos-
ton, MA, 888-893.

Yang, Q., A Theory of Conflict Resolution in Planning,

Artificial Intelligence

, 58:361–392, 1992.

